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Abstract. We discuss the higher-dimensional solutions of the Yang-Baxter eguation and
reflection equation in the elliptic case. The Hamiltonian of a spin-1 quantum anisotropic chain
with non-trivial boundary term is given.

1. Introduction

Recently, increasing attention has been paid to quantum open chain systems [1-3]. This
was initiated by Sklyanin to study a class of models with non-trivial boundary condition
such as the 6-vertex model [1]. Manchenski and Nepomenchi [2] and Yue and Chen [3]
developed this method to construct a great number of integrable models which have quantum
group symmetry. The simplest example is the Heisenberg spin chain with fixed boundary
term which has SU,(2) symmetry {4]. The Hamiltonian can be written in terms of the
generator of SU;(2) in the fundamental representation. One open question is how to find
the higher-spin chain with quantum symmetry. The standard method is the so-called fusion
pracedure [5-9]. Some examples have been given by Cherednik [5] and Manchenski and
Nepomenchie {2] for the R-matrix and K-matrix, respectively, which are related to the
trigonometric solution of the Yang—Baxter equation (YBE) [10]. These can be considered as
the limit of the elliptic solutions of the YBE. So, it is important to study open higher-spin
chain systems which exhibit Sklyanin algebra {11] and generalized algebra [12]. In this
paper, we will discuss the anisotropic spin-1 chain system.

The programme of this paper is as follows. In section 2 we explicitly give an open
spin—% H,y, model and review some well-known results which have been proposed by
Sklyanin but without explicit expression. In section 3 we study the fusion of the R-matrix
of an elliptic solution of the YBE [10], and discuss the invariance of the fused R-matrix.
In section 4 we give the spin-1 K-matrix and show that it satisfies the spin-1 reflection
equation. The Hamiltonian of the open anisotropic spin chain is given in section 5.

2. Open spin-% chain

The R-matrix related to the 8-vertex model was first found by Baxter [13]. He has also set
up the relation between the 8-vertex and the H,,, model. In the notation of Faddeev and
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Takhatajan [14], the R-matrix can be written as

4
R) =) wa(1)0y ® T )
a=I
where
w (1) + walu) = Hn)@ WO + 1)
wy (i) — walu) = HMHA@)H(u + ) @
wau) + wa(u) = @MOWH @ +n)
wa(u) — wa(u) = O(MH WO + 1)
and

o = ((1) (]:}) gy = (? 61) 03 = ((1) _?1) 0y = ((1) ?) (3)

and H{u) and ©(u) are Jacobi theta functions. A more detailed definition is given in [14].
It is well known that the R-matrix satisfies the YBE

Ry (e — V) Ry3{(u) Ryz(v) == Rz (v) Rys{at) Ria(u — ). 4)

In order to study open chain systems, Sklyanin has introduced two reflection equations
for the special case. The generalized reflection equations are given in [2,3]. For the 8-vertex
model, the reflection equations are

Rzt — v) Koo () Ry (2 + ) Ko (9) = oo () Ria (it -+ ¥) Koo () Ro1 (& — 1) 5)

and

Rz~ +v) K06 Rt (—tt — v = 20) C(0) = K (0) Ruaf—tt — v — 27) KL u6) Ron (=1 )
©)

where 1; stands for the transpose in jth space. Throughout the paper we use the notation

‘:1 =A®1and .34 = 1® A. These two matrix equations restrict the form of K.. Now
we want to find the solution of the above equations. We assume that K.{u) are diagonal
matrices. Substituting the' R-matrix defined by equation (1) and X4 into equations (5) and
(6}, one can find

K_(u) = diag(sn{& +u — n/2), sn(§ —u +1/2))

7
Ky () = diag(sn( —u —n).sn{f +u+ 1) O

where £ and ¢ are arbitrary complex arguments. This solution was proposed by Cherednik
and Sklyanin [1, 5], but the explicit form has not been given.
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3. Fusion of the R-matrix

In this section we discuss the fusion procedure of the R-matrix, which was proposed by
Cherednik et af [5-71. First we consider the properties of the R-matrix given by equation (1).
It is easy to show that

R12(0) = ©(n)H(n) P2
Ria(—n) = O H (—n) P. ®

Here Py, is a permutation operator and P is an antisymmetric projection operator, which
satisfies

(PR)* = Py

PRARP, = tr(PRA) Py )]
for A, € V& V. Now, we use the fusion procedure to obtain a high-dimensional
representation of the R-matrix. Although this idea was proposed by several authors, the
explicit form of the R-matrix for the elliptic case has not been given. Taking v = —p in
equation (4), the YBE gives

Riz2(u + 1) Ri3(w) Ro3(—n) = Raa(—n) Ria () Riz(n + 7). (10)
Define

PE=1-P; (11)
which has the following properties:

PEPL =0 (Ph)?* = P, (12)

It is obvious that the operator Pj isa symrhetric projecting operator. Multiplying equation
(10) by P;b from the right and the left, respectively, and using equation {12), we get

PyRis(0)Rp(u +m) P =0 (13)

PR+ mRia(m) Py = 0. (14)
Define

Rz () = P Ris(u — n) Riz(u) P (15)

Ry (#) = P Rua(e + n) Rys(u) P (16)

which respectively satisfy the YBE,

Ria{u — ) Ripaay () Raay (V) = Rapagy (VI Ry3ay () Ria(e — w) %))

Riz(u —v) Ri(34}(“)sz(34) ) = R£(34) (U)R; (34) () Ry2(u — v). (18)
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Here we only give the proof for R{u):
LHS = Ryz(u — v) Py Ria(u — n) Ry () Py Py Raa(v — n) Roa (V) Py
= Ria(u — v)Ria(u — M R13(u} Roa(v — ) Rz (v) P,
= Roa(v — n)R1a(e — ) Ri2(u — v) R1z(u) Res (w) Py
= Ros(v — n) Ri1s(u — n) R3 (V) Ris () Riz(u — v) P,
= P} Raa(v — 1) Ris (W) Py, P Ryae — ) Rya (U} Py Ria(e — v)
= RHS,

The proof for R'(«) is similar. Substituting equation (1) into equation (15), we have

a 0 I 0 £ 0
0O ¥ 0 F 0 K
1y 0 d 0 g 0
Rl(34) (u) == 0 gr 0 c 0 J,f (19)
R 0 F ¥ 0
0 ¢ 0 i 0 4

where

,_ . sn(w)[1 - £%sn’(n)]
a’ = sn{u 4 5} sn(u) b = = 12 s ) ()

¢ = sn{u — ) sn(x) i' = ksn®(n) sn(u — ) sniu)

o < Zkest@saGment) dam) o0,
1 — k2 sn2(u) sn?(n)

,_ 2k sn(e) snn) en(n) dnn)
T 1 — R sn(u) sn2(n)

h' = ksn(n) sn(u + 1) sn(u) sn(u — 7).

J' = ksn*(n) sn(u + n) sn(u)

S/ = sn(u) sn(n)

Next, we consider the gauge invariance of the YBE. It is easy to show that the YBE is
invariant under the transformation

Riz —~ A1BaR AT B
Ri3 = AIGRi3AT'CY!
Ry — ByC3RsB7'C5 (21)

where A, B and € are non-degenerated matrices and belong to V!, V2 and V3, respectively.
For given A € V!, B € V2, C € VP, it is easy to show that the YBE (17) is invariant
under the transformation

Riz— A® BRpA™ @ B!
Rizy > AQCRippA” @ C™!
Ryzgy = BRCRypyB~ '@ C7L. (22)
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Taking C = diag(l, /2cn(n)dn(n), 1} and A = B = [, and eliminating a scale sn{u) in
the R-matrix, we get the convenient form

a 0 i 0 ph 0
0 & 0 p 0 pg
_VJ 0 ¢ 0 .pf 0

Ripgy(u) = 0 of 0 ¢ 0 (23)
pg 0 p 0 & O
0 ph 0 i 0O a

where
p = v/2sn%(n) cnly) dn(n)
~a=sn(a+n) c=sn(u—n)
i = ksn?(n)sn(u — n) j = ksn?(n) sn(u + 1)

_ sn(m)(1 — K2 sn* () . 1 _(24)

71— k*sn?(u) sn2(n) F= 1 — k2 sn?(u) snZ(n)
. ksn?(x)
T 1~ k2 sn2(u) sn(x)”

b

g=rksn(u+nysn{u —n) h

In order to compare equation (23) with three-dimensional trigonometric R-matrix, we
investigate the degenerate case of equation (24). Taking the T-argument in the theta function
as approaching ico, we get £ — 0, sn(u) — sh(x), cn{e) — ch(u) and dn(x) - 1. So,
equation (24) changes into

2 00000
0 b 0d OO0
0 0c O0doO

Ripa) =1, 8 c 0 0 (25)
00do0 b 0
00000 a

where
a=sh(u+n  b=sh(  c=sh(—n
(26)

d = +/2sh%(n) ch(n).

This is coincident with the result given by Cherednik [5]. In a similar way we can define
Ruzpas) = P Ripa (0} Rogay (u + n) P : 27)

which acts on V12 @ V®¥ with dim VI = dim V& = 3. This R-matrix satisfies the
YBE

Ruzyaa(u — v) Ryuzyise (4) Rayss) (V) = Rpgyse (VI Ruass (W) Ruzps (s — v). (28)
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The proof is as follows:

LHS = Rys(¢t —v — MR13(u — v) Roa(u — v) Rz (e — v + ) Rysey () Rysey (4 + 1)

X Ras5) (V) Rasey (v + 1) P P

= Ria(u—v—n) R4 (u—v)R13(u—v)Ryse) () Ragssy (V) Rogsey (1) Roa (u—v-+17)

X Ragsey(v + )PP,

= Ryise) (VI R14(ut — v —1) Rusey (4) Ry (u — v Rpa{ut — V) Roysey (1) Raysey (V4-17)

X Raz(u — v+ )P PL

== Rasey (v) Rysey (v+n) Rusey (@) Rygsey (u+n) Ria (e —v~n) Ria(u —v) Roa(u —v)

X Rayz(u — v+ m)PEPE

= RHS.

In the above calculation, we have repeatedly used equation (17) and rearrange the R-matrices

appropriately. Substimting equation (23) into equation (27), we get

(Au 0 Aam O Ci» 0O By O BB\

0 A 0 Cy 0 C»3 0O Bxn O
Az; 0 A 0 Cup O By 0 B
0 Dy O Eg 0O Eiz 0 Dyp 0

Ruypayw)y=|Dx 0 Dy 0 Epn 0 Dn 0 Dy
0 Dy 0O Esu 0 Ezz 0 D 0
Biz 0 By 0 Cn 0 An 0 Ay
By, 0 Cn 0 Cy 0 Az 0

0
\313 0 By 0 Cn 0 An 0 A/

where

Ay = sn(u + 2p)[sn(u + 1) + &% sn* () sn(u ~ n)]

Aqz =k sn(a) sn()[sn + ) + sa(u — )]

Asy = K sn(u -+ 1) s2(n)lsn(e + ) + sn(u — )]

Asz = sn(e)sn{u — n) + k2 su*(m) sn(e + )]
sn(x) sn(u + )1 — k2 sa* (]2

An = [1 — kZsn2(u + 1) sn2(p)][1 — k2 sn?(x) sn(n)]
B = Pt sn*(w) _ p2k? sn®(u) sn(u + 1)
D=1 sn2(u) sn?(n) BT % sn?(u) sn2(n)
B, o 22k snGe + mlsnu — n) + snl + 7))
2= 1 — &2 sn?(u + ) sn2()
By = p* By — p2kesn(u) sn(u + 2n)

1 — k2 sn2(u) sn2(x) 71— k2sn2(u) sn2(n)

(29}



Elliptic solution of the Yang-Baxter equation 1639

ok[sn®(u + n) + sn2(p) snfu — n)]

= T R snia + ) smEm)]
L phsn{u + 1) st @) (1 ~ &% sn* ()
[1 — &2 sn?(u) snZ(q){1 — &2 sn2(ue + 1) sn’(n)]
Cyy = — 2P 50 + 1) enm) dn()[1 ~ k? sn*(n)]

[1 — %2 sn2{u) sn2(m][1 — &2 sn2(u + n) sn2(p)]

ok(1 — k% sn®(n)) sn(u + 2n) sn®(u)
[1 — k2 sn?(x) sn(n)]

[1 + &% sn?(u + 1) sn®(m][snu + n) + sn{u — )]
[1—&2sn?(u + 5)sn?(n)]

Dy, o 2300+ I = 2 s ()]
BE e sn(u + n) sn2(n)

_ pksn®(u) sn(u + 2m)[1 — k2 sn* ()

Cy = pksn(u)[(sn(z + n) sn(x — ) + sn*(m)] +

Ca=p

Da 1 — k2 sn2() sn(n)
D P sn(@)[1 — k2 sn*(n)]
2T T -k snP(w) snt(n) _
pk sn?(u) sn(u + )1 — k% sn*(n)]
D3y

= [1— k2 sn2(u) sn2(p1[1 — k2 sn?(u + ) Sn?(n)]

2Ey; = k*sn*(n) sn(u — 1) sn(u) + &% sn*(n) sn(u + n) sne + 20} + sn(u + 1) snx)
2sn2(n) en(n) dn(n)[1 4 k? sn® () sn(u + 2n)]
1 — k2 sn2(n) sn2(u)

+ sn(u — n) sn{u +2n) +

Ep =Ey Eyy = Ey

E e *snfu) sn(u + {1 — k% sn* ()12 P21 + k% sn(u + 1) sn(u — n)]
27 T — 2 sn?(u) sn2()]TT — K2 s02(u + 1) sn2 ()] 1 — k2 sn*(z + 1) sn*(n)

B = 2p%k sn(u) s + 1) en(y) dn(n) (30)

[1 — k2 sn2(u) sn2(n)][1 — k2 sn2(u + n) sn?(n)]
Similarly, we consider the gauge transformation € ® {3, where f3 is a three-dimensional
identity operator and C is the same as before. Under the transformation, the elements of R
change into

Ci;
~/2en(r) da(n}
and the other elements remain invariant. In fact, the transformations (22) and (31) can be
considered together. This gives a symmetric transformation,

Cij = Dy = Dij+/2en(n) dn(n) (31)

Rix)=C®CRwC'@Cc™ (32)
After some calculations, one finds that
Rhg}(a:;}(””u.-—.o = P(li}(34) (33)

where P24 is a three-dimensional permutation operator. From equation (28) we know
that R’ satisfies the YBE. In section 5, we will simply rewrite R’ as R.
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4. Fusion of the K matrix

This section will contribute to the fusion of the K-matrix. Taking v = u+» in equation (5),
one can find

Pi; K () Ry (2 + 1) Kot - 1) = Koot + MRz (@0 + ) K_ (@) Py (34)

which means that
1 2

PG K- ()Rt (Qu + n) K@+ n) P =0. (35)

Define
3 2

Kaz =le5 K—(u — 1/2)R1a(2u) C_(n + n/2) Py, (36)

which satisfies the generalized reflection equation
(2 - (34}

Rugppa(a —v) K - Ragyuy @ +v) K-(v)

(34 ~ (£}
= K _-(WMRuyps +v) K _(0)Rasaz(u — v} (37
where
Raauz(@) = PP Ray (u — n) Ray () Raa () Raa (e + 1) P P

It is worthwhile pointing out that the reflection equations satisfied by the fused R-matrix
and X -matrix are different from the original ones. This is due to the property of the fused
R-matrix. Now we return to prove equation (37);

LHS = Pt P Rig(u — v — )} Roa(u — ¥)Ri3(e — ¥)Rs(u — v + 1) i:’,'_(u —1n/2)R12(2u)

x i?:_(u + /DR (u +v— R+ IRy + ) Rput+v+9)
X K- (1 = 1/2) Ras(@0) K- (v + 1/ D Py P

= P} P R1a(u~v—n) Raa(u —v) Rt (u—v) I&-(H"n/2)R13CH+v—n)Ru(2u)
X Ko (/2 Ro (t9) Koo t4-1/2) Ra( = v-+1) Rey s+ 0) Reae+-u+7)
X Rya(29) K- (v + n/2) P P

= PP} R (u—n/2) R3s(20) Rya (u-Fv~n) Rug(e—v—1) Koo (t=1/2) Rz t+v)
X Ry (1 + 0)Riz(2e) K (v + 1/2) Rt + 0+ 1) Kt 1/2) Rass — v)
% Ry (u — v)Raz(u — v +n) P Pih

— PP (4 —n/2) Rss(20) Koo (v -+1/2) Ry (it + v — 1) Ros(te ) Rt (4 +v)

2
X Ry + v+ mKL (e — n/2) Ri2(20) K-t +1/2) Ria(st — v — 1) Roal — v)
x Riz(e — v)Ry(u — v+ n) P P,

= RHS.
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Besides, the K(j5 matrix has the following property:
Kz{0) = sn(§ — n) sn&) sn(n) P}, (38}

Substituting equation (7) into equation (36), we get

-K-u 0 K
Kay(u) = ( 0 Kn O ) (39)
Ky 0 Ky
where
Ko = sn(u +E) snd§ +u — 1)
" sn(€) sn(& — )
P ksn(2u) sn(n) sn(E —u — nysn(g +u ~ 1)
S sn(&) sn(E — n)
. 40)
_ ksn(2u) sn(n) sn(§ — u) sn§ + )
. sn(€) sn(€ — n)
Kar = SRE—w)snE —ut —71)
R GEGED)
Ko o sn(2u)[sn(g + u — n) sn(E — u —n) +sn(§ — u) sn(§ 4+ u)l
== 2sn(2u 4 ) sn(E) sn{€ — )
+ sn(n)(sn(§ + u — ) sn(§ -+ u) + sn(§ — u — n) sn(§ -~ H)] @1)

2sn(2u -+ n) sn(&) sn(& — n)

Here, we have renormalized K_ () so that X_(0) = 1.

Similarly, the solution of the modified reflection equation can be satisfied by X..
However, we do not need to solve directly the equation due to the existence of algebraic
automorphism with maps K_ into K. [1,3]:

$: K_(w) & Ko@) = K- (=1 —n/2). “2)

Generally, repeating the same procedure, one can find the arbitrary dimensional R-matrix
and K-matrix. Here we do not need it for the spin-1 chain systems. In a future paper we
will discuss the arbitrary dimensional X -matrix for the generalized 8-vertex modei—the Z,
symmetric model.

5. The Hamilitonian of spin-1 systems

In this section, we study the Hamiitonian of anisotropic spin-l systemns with closed and
open boundary conditions. We rewrite the R34 as Ry, (i, 7 = 0, 1,...) which acts on
Vi@ VY, and dim V! = dim VI = 3. ,

{a) Periodic case. We define the transfer matrix as

Ty () = Row () Roy—1(4) . .. Rot (). (43)
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It is easy to show that the monodromy matrix T(x) = trp Ty (&) consists of a commutative
family, i.e.

[z(u), T(v)] = 0. (44)
The proof is similar to one given by Sklyanin [1]. The expression of 7{x) about argument

u gives an infinite number of conservation quantities, which means the system is integrable.
Differentiating log z{1) with respect to u at u = 0, we get the Hamiltonian

N
H=ZH:'1+1 (45)
=]
where
(Ay 0 0 0 ¢y 0 0 0 0
0 D 0 By 0 4 0 0 0
Az q 0 9 Cy 9 Az 9 31
0O E, 0 C, 0 C, 0 A, 0
Hui=|Dy O Dby 0 E, O Dy O Dy| wo
¢ 4 0 G 6 G O E O
a 0 Ay 0 &, 0 0 0 Ay
6 0 0 A, 0 E;, 0 D 0
\o 0 0 0 ¢, 0 0 0 A&,/
where

t1 = [1 — &2 sn?(2n) sn*(n)}[sn(3n) + k2 su’(m)] A%y = kp*sn(2n)

Ay = ;. _ksa()p? ]
33 sn(2n) 27 1 — k2sn*(n)
c = p*sn@n)(1 + k% snt(n)] c = P71 + &2 sn* ()]
= 2 sn2(n) 271 —Esnt(n) (47)
,_ Prsn@mI 4 &% sa* ()] o - PlL— e sntn)]
T 2 sn2(n) 2 sn(n)
’ 2 ot ’ p*
E} = sn(p)[l — k¥ sn(n)] Ej, = 7t

Formally, this Hamiltonian is not Hermitian. But the nearest-neighbour interaction depends
upon two complex arguments n and 7 in the definition of the theta function. One can get
a Hermitian Hamiltonian by choosing these arguments properly. Besides, our result under
the trigonometric limit is coincident with the known one given by Cherednik [5].

(b} Open case. For an open chain, we define the transfer matrix as
T(u) = tro Ky (i) Tn ()K- (@) Ty ' (—n). (48)
Following the procedure given in [3], one can show that

[e(a), 7(@)] =0 | (49)
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which comprises a commutative family. This means that the model is integrable.
Differentiating () with respect to u at u = 0, one finds

Hopen = Z Hie1 +bo+ by , (50)
i=l
where
K, 0 0
bo=( 0 ki, O ) 51
0 0 K
where
K = sn(2E — m[1 — k% sn*(E — ) sn?(§)]
1 sn(€) sn(§ — n)
K‘.;S - _K]l
p o so(m) 22 pen?
Ky = Sn(E) sn(E — n)[l +k°sn*(& — ) sn“(§)] (52)
and
K 0 Kb
bN=(0 K5 0) - (53)
KL 0 k3%
where
rF = sn(28)[1 — k2 sn®(¢ — /2y sn(¢ + 1/2)]
1 sn(¢) sn{¢ — n)
g - S —mll - k?sn®(¢ — /2y sn?(¢ — 3n/2)]
# sn(Z) sn(¢ — n)
Kt — —k sn?* ({1 — k?sn®(¢ — n/2) sn*(¢ + n/D]
13 sn(¢) sn(¢ — ) 54
gt — ks’ = K sn’¢ —n/2) s’ ¢ —3n/2)]
3 ' sn(¢) sn(& — n)
gt SRl = k% sn*(2n) sn® n)]sn{¢ — n/2)[sn(¢ — 3n/2) +5n(Z +n/2)]
7=

sn?(2n) st — n) sn(¢)
Sn(f?)[K?:-; K;I] Sn(ﬂ)[K -+ K33]
2k sn(n) sn(2n) 2sn(n)

So, this equation defines the open anisotropic spin-1 chain system. One can check it by
taking its trigonometric limit, which is coincident with the known results [9]. This model
may be solved by using the quantum inverse scattering method {(QIsMm) [1, 14, 15] as in the
trigonometric case in which the key is the commutative relation. We do not solve this model
here but only give the operator relations

RS (1 w) T () RA (u 4 0) T (0) = T2 () RAE (u ++ ) TS () REL! (1 = w) (55)

azcy eacly cath

where the double index denotes summation.
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