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Abstract We discuss the higher-dimensional solutions of the Yang-Baxter equation and 
reflection equation in the elliptic case. The Hamiltonian of a spin-I quantum anisompic chain 
with non-trivial boundary term is given. 

1. Introduction 

Recently, increasing attention has been paid to quantum open chain systems [1-3]. This 
was initiated by Sklyanin to study a class of models with non-trivial boundary condition 
such as the 6-vertex model [l]. Manchenski and Nepomenchi [2] and Yue and Chen [3] 
developed this method to construct a great number of integrable models which have quantum 
group symmetry. The simplest example is the Heisenberg spin chain with fixed boundary 
term which has SLIp(2) symmetry [4]. The Hamiltonian can be written in terms of the 
generator of SUq(2) in the fundamental representation. One open question is how to find 
the higher-spin chain with quantum symmetry. The standard method is the so-called fusion 
procedure [5-91. Some examples have been given by Cherednik [5] and Manchenski and 
Nepomenchie [2] for the R-matrix and K-matrix, respectively, which are related to the 
trigonometric solution of the Yang-Baxter equation (YBE) [lo]. These can be considered as 
the limit of the elliptic solutions of the YBE. So, it is important to study open higher-spin 
chain systems which exhibit Sklyanin algebra [ I l l  and generalized algebra [12]. In this 
paper, we will discuss the anisotropic spin-1 chain system. 

The programme of this paper is as follows. In section 2 we explicitly give an open 
spin-f Hxyr model and review some well-known results which have been proposed by 
Sklyanin but without explicit expression. In section 3 we study the fusion of the R-matrix 
of an elliptic solution of the YBE [lo], and discuss the invariance of the fused R-matrix. 
In section 4 we give the spin-1 K-matrix and show that it satisfies the spin-1 reflection 
equation. The Hamiltonian of the~open anisotropic spin chain is given in section S. 

2. Open spin-; chain 

The R-matrix related to the 8-vertex model was first found by Baxter [13]. He has also set 
up the relation between the 8-vertex and the H,, model. In the notation of Faddeev and 
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Takhatajan [14], the R-matrix can be written as 

where 

and 

and H ( u )  and @(U) are Jacobi theta functions. A more detailed definition is given in [14]. 
It is well known that the R-matrix satisfies the YBE 

R i z b  - U)RI~(U)RZ~(U)  = Ru(u)R13(u)Riz(u - U). (4) 

In order to study open chain systems, Sklyanin has introduced two reflection equations 
for the special case. The generalized reflection equations are given in [Z, 31. For the 8-vertex 
model, the reflection equations are 

I 2 2 I 
Rlz(u -U)IC-(U)RZI(U+U)IC-(U) = , I C - ( U ) R ~ Z ( U + U ) I C - ( U ) R Z ~ ( U - U )  (5 )  

and 

1 2 2 I 
RIZ(-U + U) K~(u)RzI(-U - U - 217)Ic:(V) = IC$(U)RI~(-U -U -217) IC:(u)Rzi(-u +U) 

(6) 

where 2, stands for the transpose in j th  space. Throughout the paper we use the notation 

A = A C3 1 and A = 1 @ A.  These two matrix equations restrict the form of IC+. Now 
we want to find the solution of the above equations. We assume that &(U) are diagonal 
matrices. Substituting the’R-matrix defined by equation (1) and IC* into equations (5) and 
(6). one can find 

1 2 

IC-@) = diag(sn(e + U  - 17/2), sn(5 - U + 11/21] 

IC+@) = diag(sn(r - U  - q), sn(< + U + 11)) 
(7) 

where 6 and < are arbitrary complex arguments. This solution was proposed by Cherednik 
and Sklyanin [ l ,  51, but the explicit form has not been given. 
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3. Fusion of the R-matrix 

In this section we discuss the fusion procedure of the R-matrix, which was proposed by 
Cherednik eta1 [5-71. First we consider the properties of the R-matrix given by equation (1). 
It is easy to show that 

Here Plz is a permutation operator and P;Z is an antisymmetric projection operator, which 
satisfies 

for A12 E V Q V. Now, we use the fusion procedure to obtain a high-dimensional 
representation of the R-matrix. Although this idea was proposed by several authors, the 
explicit form of the R-matrix for the elliptic case has not been given. Taking U = -11 in 
equation (4). the YBE gives 

Ridu + ~ ) R I ~ ( u ) R z ~ ( - I ~ )  = Rn(- f l )Rn(~)Riz(~  + i l). (10) 

Define 

P; = 1 -P- 12 (11) 

which has the following properties: 

PZP, = 0 ( P A Y  = PA. (12) 

It is obvious that the operator PL is a symmetric projecting operator. Multiplying equation 
(10) by PA from the right and the left, respectively, and using equation (12). we get 

Define 

which respectively satisfy the YBE, 



0 b' 0 f' 0 h' 

 RID^)@) = 
h ' O f ' O b ' O  
0 e' 0 i' 0 a' 

where 

, sn2(u)[l - k2sn4(q)]  
1 - k2 sn2(u) sn2(q) 

a' = sn(u + q )  sn(u) b = 

c' = sn(u - q )  sn(u) i' = k sn2(q) sn(u - q )  sn(u) 

h' = k sn(q) sn(u + q )  sn(u) sn(u - q). 

Next, we consider the gauge invariance of the YBE. It is easy to show that the YBE is 
invariant under the transformation 

Riz -+ A I B ~ R I ~ A ; ~ B ; ~  

where A ,  B and C are non-degenerated matrices and belong to V i ,  V 2  and V 3 ,  respectively. 
For given A E V i ,  B E V 2 ,  C E Vi3", it is easy to show that the YBE (17) is invariant 
under the transformation 

Riz + A @  BRi2A-l @ E-' 
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Taking C = diag(l,JZcn(q)dn(V), 1) and A = B = IZ and eliminating a scale sn(u) in 
the R-matrix, we get the convenient form 

/ a  0 i 0 ph O\ 

where 

a = sn(u + q )  

i = ksn2(q) sn(u - q )  

c = sn(u - q )  

j = k sn2(q) sn(u + q )  

1 
1 - kZ sn2(u) snz(q) 

f =~~ sn(u)(l - kzsn4(q)) 
1 - kZ snZ(u) sn2(q) 

b =  

k snz(u) 
1 - kzsnz(u) snZ(q)' g = ksn(u +q)sn(u - q )  h = 

In order to compare equation (23) with threedimensional trigonometric R-matrix, we 
investigate the degenerate case of equation (24). Taking the 5-argument in the theta function 
as approaching ico, we get k -+ 0, sn(u) + sh(u), cn(u) + ch(u) and dn(u) -+ 1. So, 
equation (24) changes into 

a 0 0 0 0 0  f O b O d O O  

\ o  0 0 0 0 a /  

where 

a = sh(u + q )  b = sh(u) c = sh(u - 4) 
(26) 

d = J-. 
This is coincident with the result given by Cherednik [SI. In a similar way we can define 

R(Iz)M(u) = P;RI(~+(U)RZ(~~)(U + q)p; (27) 

which acts on V(") @ V(34) with dimV(lZ) = dim V(34' = 3. This R-matrix satisfies the 
YBE 



sn(u) sn(u + q)[l- k2sn4(q)I2 
[l - k2sn2(u + q)sn2(q)][l - k2sn2(u)sn2(q)1 

AD = 



p sn(u f q)[l - k2 sn4(q)1 
1 - kZ snZ(u + q )  snz(q) 0 1 2  = 

pksnz(u)sn(u +2q)[1 -k2sn4(q)] 
1 - k2 sn2(u) sn2(q) DZI = 

p sn(u)[l - k2 sn4(q)] 
1 - kZ  snz(u) snz(q) 

Dz3 = ~ ~ 

2Ei1 = k2sn4(q) sn(u - q )  N u )  + k2sn4(q) sn(u + q )  sn(u + 2q) + sn(u + q)  sn(u) 
2sn2(q)cn(q)dn(q)[l +kZsn3(u)sn(u +2q)I 

1 - k2snz(q)snz(u) + sn(u - q )  sn(u + 277) + 
E33 = Eli El3 E31 

sn(u) sn(u + q)[l - k 2  sn4(q)IZ p2[1 + k2 sn3(u + q )  sn(u - q ) ]  
1 - kZsnz (u+q)snZ(q )  [ l  - k Z s n 2 ( u ) s n 2 ( ~ ) ] [ l  -kZsnz(u +q)snz(q) l  + Ezz = 

Similarly, we consider the gauge transformation C @ 13. where 13 is a three-dimensional 
identity operator and C is the same as before. Under the transformation, the elements of R 
change into 

and the other elements remain invariant. In fact, the transformations (22) and (31) can be 
considered together. This gives a symmetric transformation, 

R’(u) = C @ CR(u)C-I @ e-’. (32) 

where P112)(34) is a three-dimensional permutation operator. From equation (28) we know 
that R’ satisfies the YBE. In section 5, we will simply rewrite R‘ as R. 
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4. Fusion of the K matrix 

This section will contribute to the fusion of the K-matrix. Taking U = u+q in equation (5), 
one can find 

I 2 2 I 
P , I C - ( U ) R ~ I ( ~ U + ~ ) I C - ( U + ~ )  = I C - ( U + I I ) R I Z ( ~ ~ + ~ ) I C - ( ~ ) P ~ ;  (34) 

which means that 
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Besides, the K(j2) matrix has the following property: 

&zJ@) = sn(t - ?) sn(t)sn(a)pl:. 

Substituting equation (7) into equation (36), we get 

1641 

(38) 

Here, we have renormalized L ( u )  so that K ( 0 )  = 1. 
Similarly, the solution of the modified reflection equation can be satisfied by K+. 

However, we do not need to solve directly the equation due to the existence of algebraic 
automorphism with maps IC- into IC, [1,3]: 

4 : K-(u)  --f K+(u)  = Kc'_(-u - q/2). (42) 

Generally, repeating the same procedure, one can find the arbitrary dimensional R-matrix 
and K-matrix. Here we do not need it for the spin-I chain systems. In a future paper we 
will discuss the arbitrary dimensional K-matrix for the generalized %vertex model-the Z. 
symmetric model. 

5. The Hamiltonian of spin-1 systems 

In this section, we study the Hamiltonian of anisotropic spin-1 systems with closed and 
open boundary conditions. We rewrite the R(12)(34) as Rij, (i, j = 0, 1,. . .) which acts on 
V i  8 Vj, and dim V i  =dim V j  = 3. 

(U)  Periodic case. We define the transfer matrix as 

TN(u) = RoN(u)RoN-I(u). . . Roib). (43)' 
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It is easy to show that the monodromy matrix ~ ( u )  = tro TN(u) consists of a commutative 
family, i.e. 

[T(U), W l  = 0. (44) 

The proof is similar to one given by Sklyanin [I]. The expression of ~ ( u )  about argument 
U gives an infinite number of conservation quantities, which means the system is integrable. 
Differentiating log ~ ( u )  with respect to U at U = 0, we get the Hamiltonian 

where 

0 

0 
D;2 

EI I 

A; I 

0 

0 
0 
0 

c; 0 2 

c;, 

E42 

0 

0 

0 

4 1  0 

c.& 
0 

Cil 0 

E; 1 
0 

0 
0 

4 3  

D.& 
0 

0 
0 
0 
0 

0 0  O o \  

where 

Formally, this Hamiltonian is not Hermitian. But the nearest-neighbour interaction depends 
upon two complex arguments 7 and T in the definition of the theta function. One can get 
a Hermitian Hamiltonian by choosing these arguments properly. Besides, our result under 
the trigonometric limit is coincident with the known one given by Cherednik [5]. 

(b) Open case. For an open chain, we define the transfer matrix as 

T(U) = tr~IC+(U)TN(U)IC_(U)TN'(-U). 

Following the procedure given in [3], one can show that 

[T(U), t (v) l  = 0 

(48) 

(49) 
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This means that the model is integrable. which comprises a commutative family. 
Differentiating r ( u )  with respect to U at U = 0, one finds 

where 

where 

and 

where 

/ K ! 8  0 0 \ 

sn(q)[K& + K$l + snh)[K? + K$l 
2ksn(rl) sn(7-77) 2 

+ 
So, this equation defines the open anisotropic spin-I chain system. One can check it by 
taking its trigonometric limit, which is coincident with the known results [9].  This model 
may be solved by using the quantum inverse scattering method (QISM) [ I ,  14,151 as in the 
trigonometric case in which the key is the commutative relation. We do not solve this model 
here but only give the operator relations 

R:;2 (U - u)T_cld'(U)a;;;;:(u + ")T?"(U) = T : y U ) g $ ; ( u  + u)T:ldyU)R;;;(U - U )  (55) 

where the double index denotes summation. 
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